
Historie al obj ects for software engineering environments

R Casallas
Opto. Ingeniería de Sistemas y Computación

Universidad de los Andes
AA 4976

Bogotá, Colombia

rcasalla@uniandes.edu.co

Abstract
Process centered Software Engineering environments (PSEs) introduce new requirements on the
repository capabilities. Modeling and managing capabilities must be offered to address product and
process evolution problems.

We present in this paper a temporal data model designed to represent software artifacts, associations
between them and their evolution over time. This model is called HOAM which stands for Historicaf Object
Association Model. A high-level declarative language for querying a HOAM database is also presented.

This work has been achieved and it is currently experimented on the Adéle configuration management
[EC94].

This work intends to benefit from temporal database domain by integrating these concepts into a
framework for building Software Engineering Environments (SEE).

Key Words

Temporal databases, versions, software engineering environments, software process.

1. !ntroduction

lt has been well understood that product quality control can be achieved only if the process by which
software is produced is itself controlled. But for measuring, evaluating, controlling, and improving the
software process, extended traceability services are needed. This traceability needs the recording of
intermediate product and process states all along the software production process (i.e. during a very long
time).

In Software engineering, versioning has been the natural answer for recording intermediate product states.
But still there are severa! difficulties. Versioning is considered a mechanism, not a concept; and thus is
u sed for many unrelated purposes: cooperative works, copies, transient or work version, variants, histories,
etc. There is a confusion about the concept involved [Sci91]. Applications must define themselves their own
concept of version, they must define the semantics for creating and retrieving versions, and they must also
assume the same understanding from other applications which share the same objects.

We proposed in [EC95] a clear separation between three version concepts: historical, logical and
cooperative. We showed that these versioning dimensions are orthogonal:

• Historical: it contains the evolution of the object according to the time dimension. lt is to be used for recording
intermediate object values and for extended traceability.

• Logica!: objects may exist simultaneously in multiple variants for logical reasons.

• Cooperative: multiple and concurrent activities are taking place in an SEE. At a given moment in time, concurrent
activities may have a cooperative version ofthe same object.

In this paper, we present our proposal to manage the historical dimension. lt is based on a temporal object
model called HOAM which stands for Historica/ Object Association Mode/ (cf. section §2). For the other two

421

dimensions see [EC95] [Est96].

A question that arises when dealing with temporal databases in the context of object-oriented systems is
whether to associate time with attributes or with objects.

Attribute timestamp, as a first solution, has the advantage that information is not duplicated between states.
This approach has been chosen in [Gad88] [EW90]. The major shortcoming is time overhead in processing
data to manipulate non-normalized structures. Object timestamp, as a second solution, gives to the notion
of state an essential role. lts advantage is the possibility of considering states as objects (first class objects)
and then, referenced them, established associations with them, etc. lt has been chosen in [Sno93] [JS92]
[SC91] and also in HOAM where the problem of duplicated information is solved with a delta mechanism
[Tic85] [SC91]. -

In software engineering it is necessary to represent the history of associations between objects cluring a
period of time (e.g. "last month user Smith was responsible of code activity") but also, it is necessary to
represent associations between objects belonging to different periods of time (e.g. "create a software
configuration, namely release4.1, composed by the program objects tested last month"). Our rnodel allows
to manage with both kinds of associations, called temporal and non temporal respectively.

Furthermore, a high-level declarative temporal query language has been defined for querying historical
data This language is based on path expressions and filter notions (cf. section §3).

2. The data modei

2.1 Core modei

The core model is object-oriented. This paradigm is well suited for representing software components and
associations between them. Despite the high grain variability of software components, al! entities are
represented in a uniform way. Objects can represent files, activities, functions as well as simple values like
strings or dates. Associations are independent entities (externa! to objects) because they model
relationships with a different semantics such as derivation, dependency or composition. An association is
established from an orígin object toa destination object, i.e. associations are directed.

Objects and associations are typed. /\ type describes the common structure (attribute definitions) and
behavior (methods) of its instances. Association types describe also the association domain, i.e. between
which object types the association can be established.

2.2 Historical Objects

Based on the core model we have defined a temporal data model called HOAM.

In our model, we consider only one dimension of time. We assume that time consists of discrete equidistant
instants, T= {0, 1 ,2, ... , now} together with the chronological ordering <.

A historical object is a sequence of states. Each state is an object (as in the core model) and its value
corresponds to the historical object value during a time interval. This interval defines the lifespan of the
state. An instance of historical-of Ttype is a historical object defines by:

OH= <o id, 1 stateo sta/e¡, ... , statenl >

oíd is the historical object identifier and 1 stateo state1, ... , statenl is the value of OH, i.e. a sequence of states
of type T (cf fig. 1).

422

Figure 1 A historie al object and its sequence of states.

Continuity assumption

Continuity assumption is taken in this model, i.e., attributes values are valid from the beginning of one state
until just befare the next one [CW81]. So, the value of OH at time t is defined by:

!f 'k and r J;~J are r;ro insranrs al 1rhich two consecutive srates o(OH 11ere created. thenfor al/ 1 such as.

'k-::;l<ik~J.

va/ue !OH 1! = \'0/ue (sta/e !OH, lk))

Lites pan

Users can stop the evolution of a historical object. In this case, we say that this historical object is dead.

Lifespan function on a historical object returns the interval during which the object has been considered
alive: [t 0 , tdeadl, if it is dead [t 0 , now [otherwise.

When a historical object OH is alive, the last state created is called the current state. lf th1s state was
created at instant tn, its value is valid during [tn, now[as a consequence of the continuity assumption. This
interval corresponds to its lifespan.

The lifespan function returns the interval during which a state object was the current state. lf

1 stateo state1, . . state11l Then,

- lifesponl sra/e J) = [lk lk+Jf 11·here lk lk+l ore the instants o(crea/ion of the successive si ates: statesk and sta/e k+!

- ![OH is alhe. !i(e.1pan(stale10 = [tr¡. now[, else,
/ife.lpanrstme 11) = [tn- lchJL where tcbJ¡j is the dead instant ofOH.

; iJ 1=1 /¡fespanlslate¡J r. lifespan(stote¡) = 0

Example

Our example describes a database of software developrnent projects. Entities managed here are projects,
agents, activities and programs. A project has a manager (an agent). Agents are responsible for activities.
For the sake of simplicity, only the coding activities are here taken into account. The properties of an
activity (coding activity) are respectively its input and its output configurations. A configuration is a set of
programs and a program is an object which represents a source code file ora binary file.

In our example, the project, called TDBP (Temporal DataBase Project), was created in 1990. Between
1990 and 1992 its budget was $1OM and, in 1993, it was raised to $20M. The duration of the project has
been estimated to 24 months but in 1992 it has been augmented to 32 months and in 1995 to 42 months
(cf fig. 2).

Some attributes are not characteristics of any specific state but of the historical object as a whole. For
instance, while budget and duration are properties of each state, creation date and name project are two
properties of the historical object.

Our model provides common and immutab/e attributes concepts. The former are used to represent
properties shared by all states. The latter are used to specify properties of each state. Between tvvo
successive states, there is at least one immutable attribute which has changed. Updating an ímmutabíe
attribute creates automatically a new state of the object. The simultaneous update of more than one

423

immutable attribute needs to be done in the same transaction. lt is the classic Check-in Check-out
paradigm [Fei91], i.e., for changing an attribute of an object, the object is treated out of the control of the
system (Check-out) and then, a new state is created with the new attribute values which are given (Check­
in).

na me = "TDBP"

budgct = lOMK_-· 1 _l budgct = 20MK
duration-== 14 ~ durntiml = 321 - 1 dunllion=-1-2

1 1 1
90-(11-0l 92-0J-01 ()J-01-{1! 'J:i-0141!

Figure 2 A TDBP historical object.

2.3 Associations

A historícal data base must manage not only the evolution of objects, but also the history of the relationships
among objects. For instance, in a historical database of employees, it is essentíal to maintain information
such as "duríng the summer 1995 employee Smith worked for the Toys department" or "Smith was the
manager of the toys department between 1994 and 1995". These examples show relationships (work-for,
manage-by) which exist in the real world.

In the example of the figure 3, the managed-by association is a temporal association. lt allows to indicate
the relationship between a project and its boss. For instance, tl1e manager of the TDBP between 1990-1993
and since 1995 is ti-Je agent named Peter. Between 1993 and 1995, agent Peter was the manager of the
project SCMP (Software Configuration Management Project).

SCMP 1 M"fW! t @

managed-by

Figure 3 managed-by is a temporal association.

As it is presented in [WD93], a relationship between two historical objects can exist only if both participating
objects are alive. That is a temporal constraint which extends the classical referential integrity constraint.

In HOAM, a temporal association can be established between two historical objects. lt is defined by a validity span
which determines the periods of time during which the association is valid. This period of time is a temporal
element [JEG+94].

The associations managed-by(TDBP, Peter) and managed-by(SCMP, Peter) were valid during

{[90-01-01,93-01-01[, [95-01-01,nowD and {{93-01-01,95-01-010

respectively, since during these periods the objects (TDBP and Peter or SCMP and Peter) were alive.

In the context of software engineering, we must also establish associations between objects without
temporal constraint We called these associations non temporal associations. The intersection of
participating objects lifespan can be empty.

In the examp!e of tlle figure 4, the component association is a non-temporal association. An instance of a
cornponent association can be established between a state of a configuration object and a state of a
program object In the example, there are three instances of the component association A!l have for origin
state(re!-4.1,tk) and the three destinations are: state(Pt, tr), state(P2JJ and state(P3

424

tr t_¡ tj Time

figure ~ compone mis a non-temporal association.

Note that the intersection betv,een state(rel-4.1,t¡.J.Iifespan and state(P3tj).lifespan is empty.

A non temporal associations can be established between a historical object/state object and historical object/state
object (cffig. 5).

a) b) ou,r '"'i
OHz D D O Hz

e) ou,:I: d) OHJI

OHz 0 R 0
R¡

O Hz

figure :5 non-temporal associations: a) state to state b) state to historical object e) historical object to state d) historical
object to historical object.

For the sake of simplicity and when the confusion does not arise, we will cal! object for historical object ancl
state for state object

3. The query la.nguage

HOAL is the query language proposed for querying a database modeled in HOAM. Objects, states and associations
can be seen as graphs. The language uses this fact to reach the instances by navigation through graphs. Navigation can
be achieved through both temporal and non-temporal associations in a similar syntactic way.

HOAL also offers a filtering mechanism for selecting the instances to which operations will apply.

In this section we first present basic operators to access historical objects and states object. Then. we
describe the filtering mechanism and finally, we show the navigation through associations.

3.1 Objects

3.1.1 Historical references

An object is managed via historical references. A historical reference is defined by:

HistRef= <oíd-OH í"S>

where oid-OH is the historical object identifier and VS is the visibility span on this object. The VS is defined
by a temporal element and determines the periods of time during which the object is observed. For an
object there can be severa! historica/ references.

425

3.1.2 Historical references and temporal associations

Temporal associations can be established only between (historical) objects. Each obje~t participating in the
association is designed by a historical reference. The temporal constraint signifies th¡:(t the visibility span of
both historical references is the same. In the example of the managed-by association (cf fig. 3), the
corresponding historical references are:

<TDBP, {[90-0!-01, 93-01-01[, [95-01-01, now[}>

<Peter, {[90-01-01, 93-01-01[, [95-01-01, now[}>

The validity span of the association corresponds to the visibility span of the historical references.

3.1.3 Access to objects

The language offers methods to access the visibility span, the object and the states of an object designed
by a historical reference. Suppose a historical reference called Pe ter-TDBP which is a reference to the
object Peter during the time when he was in relationship with TDBP object:

Peter-TDBP= <Peter, {[90-01-01, 93-01-01[, [95-01-01, now[)>

one can apply the method VisibilitySpan:

Peter-TDBP.VisibilitySpan

which returns the temporal element: {[90-01-01, 93-01-01[, [95-01-01, nowo. Also, one can apply the method
HistObj:

Peter-TDBP.HistObj

which returns a historical reference:

< oid-OH, oid-OH.Iifespan>

To access states, HOAL offers the First and Last methods. For instance,

Peter-TDBP. First

returns the first visible state through the historical reference, while,

Peter-TDBP.Last

returns the last one.

The AI/States method allows to transform a sequence of states into a set of states. For instance,

TDBP.AIIStates

{TDBP@90-0l-Ol, TDBP@92-0I-Ol, TDBP@93-0l-Ol, TDBP@95-0I-OI}

The "@" operator can apply to a historical reference to access a particular state. lts argument is a time
expression t. For instance,

Peter-TDBP@90-0/-0/

an exception is produced if the t expression is not into the visibility span of the historical reference.

3.2 States

In a state object, one can access the interval which defines the lifespan of the state, the successor or the
predecessor state and also, we can access attribute values. lf state_ref is a state reference, state_ref.TimeStart

and state_ref.TimeEnd return the instants which define its lifespan (cf section §2.2). One can get the
!':11r.r:essor and predecessor of one state using state_ref.successor and state_ref.predecessor.

426

In order to access attribute values, the point operator has been defined: state_ref.attr. A query example is,

Q1. What was the fi rst budget of the TDBP project?

TDBP.First.budget return $ 1OM

Q2. What was the role of agent Peder when the TDBP project began?

Peter@(TDBP. Fi rst. TimeStart). role

3,3 Types conversion

State to historicai reference

A type conversion from a state to a historical reference occurs when in a HOAL expression a value of type
historical reference is expected and a value of state is found. In this case, state is converted toa historical
reference consisting of the object, to which the state belongs, and of the state lifespan as visibility span.

Historicai reference to state

A historical reference is converted to state giving the reference to the last visible state through the historical
reference. With this conversion rule, the expression:

OH.attr

is equivalent to:

OH.attr = OH.Last.attr

Q3. What is the budget of the TDBP project?

TDBP.Budget

The conversion of TDBP to a state object is equivalent to:

Q4. What is the current budget of the TDBP project?

TDBP .Las!. Budget return 20

3.4 Filters, sets and historical references

The HOAL filter expression:

S [Filler]

is interpreted according to the type of s. A filter is used for different purposes depending on whether it
applies to historical references. to a set of historical references orto a set of states.

The role of a filter on a historical reference, called temporal fi/ter, is to restrict the visibility span of the
original reference.

A Filter on a set of states selects elements among the set which satisfy it, we can say that the filter restricts
the cardinality of the original set.

A Filter on a set of historical references applies to each element of the setas a temporal filter.

Befare presenting each case, some definitions are given. These definitions are important to understand the
interpretation of s [Filter] HOAL expression according S type.

427

On sets, two special operators have been defined: filters and image. Let 1 to be the filter operator so that:

S 1 P = (x ! x E' S and P(x} }

returns the subset of the elements of S which satisfy the predicate P. For instance, if we want to select the
elements minar to "4" in the set of integers {2,3,4}:

{2, 3,4} 1 (J.h.Ls<-1) 1vhere t.h.is. represents an element of the se/

the result is the set {2,3}.

Let map be the image operator such that S map F signifies compute the image of the set S by the function F:

S map F = {x '1 x '=F(x) and t x E' S}

For instance, if we want to add 2 to each element into the set of integers {2,3,4}, we must compute the
image set:

(2.3,4} map (this+2) lt'here this represen/ an element in/o the se/

the result is the set {4, 5, 6}.

3.4, 1 Temporal fi!ter

A temporal filter applies to a historical reference in order to restrict the visibility span of the historical object
to intervals which satisfy a predicate. For instance, if TDBP is a historical reference defined by:

<TDBP, {[90-01-01. nrm[} >

the HOAL expressjon,

TDBP[budget >1 O]

is evaluated as follows: the predicate budget > 10 is tested on each visible state through the historical
reference. Her~, the resúlt is the new historical reference:

<TDBP. (f93-0!-0l, now[} >

Generally, when a temporal filter defined by a predicate p applies to a historical reference rh, note rh[p], it
returns a historical reference rh' so that its visibility span is computed as follows. lf p-states set corresponds
to the set of states in rh which verify the predicate p:

p-states = (e 1 e E' rhHistOb;.AIIstates and p(e)}

and {e¡.lifeSpan} is the temporal element (a set of one interval of time) corresponds to the lifespan of the
state e¡. Then,

rh' f'isibi!ity5/Jan = rh. VisibilitySpan íl (U {e¡.lifeSpan})

Compared to the language presented in [CG93], the new VisibilitySpan corresponds to temporal domain
returned by the temporal expression [[budget(TDBP) >10]]1.

3.4.2 Filter on set of states

Let the set TDBP.AIIStates. The HOAL expression:

TDBP.AIIStates [budget <10]

is interpreted as S!P where S is TDBP.AIIStates and P is budget <10:

!DBP.AIJStates ¡this.budget <JO= { TDBP@90-0!-0J, TDBP@92-0l-OJ}

Thus, when in the HOAL expression S[Filterj, S is a set of states objects, it is interpreted as: S 1 Filter

1 In 1 CG93], [[P(o)]] is a temporal expression which returns the temporal domain ofproperty P of an object o.

428

Let TheProjects be a set of historical references of type historic-of Project The HOAL expression:

TheProjects [Budget > 1 O and kind = ESPRIT]

returns tlle set of ESPRIT projects:

(p' 'p = p[p.Budger > JO aJI(/ p);ind =ESPRIT) ond p E: TheProjecrs}

Thus, when in the HOAL expression S[Filter], Sisa set of historical references, it is interpreted by:

S1f¡ map P i. e., {x' 1 x' = x [P) ond x E: S/

The Point operator on sets

The point operator and the navigation operators (cf. section §3.5), which apply toa set of states orto a set
of historical references, are interpreted as follows. lf S is a set and attr is an attribute defined in the type of
the elements of S, the HOAl expression: S.attr

returns the set defined by:

S map ".arrr" = (v • 1' =s.arrr va fue cmd s E: .S)

3.5 Navigation

Path expressions describe paths along the graphs formed by objects, states and associations between
them. For instance, in the figure 6 there is an association, called A, between 01and 02objects and,
another one B between 02and 0 3 objects. The path expression 01---+A---+B

o 1 02 o,
~¡¡¡j-i!illiliif-----B-~ ~

Figure 6 A graph HO.\IVI

returns the object OJ. 01 object is called the root object of the path expression, andA and B are
associations.

Patll expressions are proposed to ease the task of accessing objects [FLU94] [KKS92]: followíng links
between objects witllout having to write down explicit join conditions. This kind of languages is well-suíted
for software engineering environments because, generally in these environments, users know externa!
object names and access tllem directly or through links [BMT88]. For instance, a typical query can be "give
me all the objects depending from the string_mgr module" or "give me the components uf the input
configuration of the MMM activity".

3.5.1 Thmugh non-temporal associa~tions

In general, for an object Root which represents a set of references to objects, and an association A whose
doma in type: T Aorigin for the origin objects and T Adest for the destination objects, then the path expression
E:

E= Rool-*A (resp. E= Root<-A)

returns a set of objects of type T Jldesl: (resp. TJJorigin).

lf A is a non-temporal association then Root should contain a set of states or a set of historical objects
according to T Aorigin type. Conversion types rules (cf. section §3.3) will be used if necessary.

For example, let us consideran activity called MMM (Memory Management Module development). In figure
7, the current state of MMM activity has for its input attribute value an o/d state of the configUI·ation called

429

re/4.2. This state configuration has for component a state of the program called P1.

MMM

rel.4.2

PJ

p2

90-0I-UI

Figure 7 Non-temporal associations.

~"

1

{input 1 i
... / componcnt i

'dcpcnd-Q i
1 1 1 ;

1 1 ·' 1
92-01-01 93-01-01 9_.,-01-01

The query "what are the modules of the input configuration of the MMM activity?" Can be expressed by the
HOAL expression:

MMM~input~component

The input association has state activities for origin domain and state configurations for destination domain.
Then MMM is converted to a state. This is equivalent to rewrite the query as: "what are the modules of the
current configuration input of the MMM activity?"

MMM@Last~input~component

this expression returns a set of Program states. In the example, this set is:

{P 1@91-0 1-01}

In the HOAL expression:

MMM@Last~input~component~depend-on

a coñversion from the state program object to the historical program object is achieved in arder to reach the
programs on which the configuration cqmponents depend.

3.5.2 Through Temporal associations

Navigating through temporal associations implies restraint the visibility span on historical objects. Let us
show it first in an example, and then, let us give the general case.

The agent Pe ter was during his life-span responsible for two activities: during 1990 and 1992, MMM, and
after, between 1992 and now, GUI (graphic user interface development) (cf. fig. 8).

We are interested by queries:

Q5. What is the last budget of the projects managed by agent Peter?

The HOAL expression which corresponds to this query is:

Peter+-managed-by. budget

This expression is interpreted as follows: Peter+-managed-by return the set of historical references:

{TDBP Peter. SC MP Peterl where

TDBPPeter= <PBDT. {[90-01-01,93-01-01[, [95-01-0l,now[}> and

SCMPPeter= <SCMP. {[93-01-01, 95-01-01[) >

point operators on each historical reference,

{TDBP Peter· budget, SCMP Peter budget}

~e:: ronsequence of casting types:
430

{TDBP@Iast. hudget. SCJfP@last.hudget}

'managed-by Jmanaged-by

Peter

GU

')1\-ill-lll 92-0l-01 lJJ-!1]-01 'J.:'-..11]-!1]
no'' time

Figure 8 Peter's activities.

Generalization

Let us define the path expression as:

En= En-1~A

En is a set of historical references on the ínstance of T A:lrigín or T fldest· Type depends on sense of
navigatíon (--+, -(----).

When a temporal associatíon is crossed, its visibílíty span ís reduced. In a general manner, let us assume
that En-1 contaíns the set of historical references:

E1-¡-] = (r/1-0 ¡. rh-OJ rh-0171 }

For each rh-Ok in En-f

rh-Ok -+A

let us assume that rh-Ok-HistObj = O k is an object contaíned ínto the set En-1 and also, there are many A
associations from Ük

Figure 9 navigation through temporal associations.

all okdestination objects are into the result set En The vísíbility span is defined by:

rh-Ok= < ok VSoF

the validity span of the temporal associations A between okand o/<· is

T'aliditySjJW1 (A (O k Dj~!

the new visibility span of the object O¡~ is defined by:

JISIJ = VSan ValiditySpan (A (O k Dj~)

For ínstance, ínto TDBP--+managed-by[nom = "Peter"] expression, the start historical reference is the historical
object TDBP and the visibility span is:

431

VSpsaT= {[90-01-01. nmv(}

The validity span of manager-by association between TDBP and Peter objects is:

ValíditySpan(managedby(PBDT. Pe ter)) = { [90-01-01, 93-01-01 [. [95-01-01, now [}

the new historical reference is:

newre,¡:Peter = < oid-Peter, VSPete? such as:

VSPeter = VSpsmn ValiditySpan(chef(PBDT. Peter))

= { [90-01-01. 93-01-01[, [95-01-01, /10111 [}

4. Conclusions

In this paper we have presented a temporal data model called HOAM. In conjunction with the temporal
model, we have presented a query language HOAL to information retrieval. The HOAL /anguage allows
each HOAM concept to be exploited and, in particular, the historical concepts. HOAL is based on two
notions: path expressions and filters.

In the context 01' software configuration management, file revisions ís the unique aspect taken into account
in almost all software configuration managers. HOAM overtakes this aspect.

There has been a lot of researches in temporal database domain during the past 15 years. Most of these
works are based on the íelational model. Works like [BJS95] show that the field is mature enough.
Unfortunately, in the case of object-oriented models, it is less true. ,LO,Jthough important works has be done
[SC91] [Sno95] [NMY93] [RS93], anda lot of works still needs to be pursued.

Our work is based on a object-oriented model [EC94] because in software engineering context due to
complex data, object-oriented model are the most appropriate one [Ber87].

According to the representation matrix proposed in [EKF93] to classify temporal objects models, our model
is at the intersection betvveen object versioning and relationships object representation

The main difference between our model and temporal object models, like those presented in [Sno95j, is the
way we have integrated the relatíonships (associations) P, particularity of HOAfVl is both temporal and non
temporal associations.

The context of our work has been the Adéle software configuration management. At the moment, the main
goal of the Adele project' is to define and implement a kernel to build process software engineering
environments. We need to provide high leve! concepts and mechanism, but hiding the complexity of the
involved technology. Our work goes in this direction.

We have implemented a prototype of HOAf\11 and HOAL by:

• using and adapting severa! components ofthe Adele kernei, and,

• implementing the new data types of HOAM a nd HOAL : intervals and temporal elements.

References

[Ber87]

[BJS95]

[BMT88]

[CG93]

432

Ph. A. Bernstein. Database system support for software engineering: an extended abstrae!. In Proc. ofthe
9th lnt'l Conf. on Software Engineering, Monterey, CA, March 30-April 2 1987.

M. H. Bohlen, C. S. Jensen, and R. T. Snodgrass. Evaluating the completeness ofTSQL2. In S. Clifford and
A .. Tuzhilin, editors, Recent Advances in Temporal Databases, pages 153-174, Zurich, Switzer!and, Septem­
ber 1995. Proceedings of ihe lnternational Workshop on Temporal Databases. Springer Verlag.

G. Boudier, R. Mino!, and l. M. Thomas. An overview of PCTE and PCTE+. In Proc. ofthe 3rd ACM Sympo­
sium on Software Development Environments, Boston, Massachusetts, f\Jovember 28-30 1988. In it ACM
SIGPLAN 1\Jotices, 24(2):248-257, February 1989.

T. Cheng and S. K. Gadia. An objec!-oriented model for temporal database. In R.T Snodgrass, eclitor, Proc.
of the international on an infrastructure for temporal, Alington,Texas, june 1993.

[CW81] J Clifford and D. Warren. Formal semantics for time in databases. Transactions on databases systems,
8214-264, 1981.

[EC94] J. Estublier and R. Casallas. The A dele Software Configuration Manager, chapter 4, pages 99-139. Trends
in Software. J. Wiley and Sons, Baffins Lane, Chichester West Sussex, P019 1 UD, England, "1994.

[EC95] J Estublier and R. Casallas. Three dimentional versionning. In J. Estublier, editor, Proc. of 5th lnt'l Workshop
on Software Configuration Management, Seatle, Washington, USA, May 1995. ACM, Software Engineering
Notes.

[Ef<F93] R. Elmasri, V. f<ouramajian, and S. Fernando. Temporal database modelling: An object-oriented approach.
In ACM, editor, Proceedings ofthe Conference on /nformation and Know/edge Management, 1993.

[Est96] J. Estublier. Workspace management in software engineering environments. In l. Sommerville, editor, Proc.
of 6th lnt'i Workshop on Software Configuration Management, Berlin, Germany, March 1996. Preprint of pro­
ceedings.

[EW90] R. Elmasri and G. Wuu. A temporal model and query language for ER databases. In IEEE Data engineering
conference, 1990.

[Fei91] P H. Feiler. Configuration management models in commercial environments. Technical Report CMU/SEI-91-
TR-7, Carnegie-Mellon University, Software Enginnering lnstiture, March 1991.

[FLU94] J. Frohn, G. Lausen, and H Uphoff. Access to objects by path expressions and rules. In Proc. ofthe 20th lnt'l
Conf on Very Large Data Bases, pages 273-284, Santiago de Chile, Chili, 1994.

[Gad88] S. f< Gadia. A homogeneous relational model and query language for temporal database. 13(4):4"18-448,
december "1988.

[JEG+94] C. Jensel, R. Elmasri, S. Gadia, P Hayes, and S. Jajodia. A consensus glossary oftemporal databasea con­
cepts. ACM SIGMOD RECORD, 23(1), march 1994.

[JS92]

[f<f<S92]

[NMY93]

[RS93]

[SC91]

[Sci91]

[Sno93]

[Sno95]

C. Jensel and R. Snodgrass. Temporal specialization. In Proceeding ofthe lntemational Conference of data
engineering. IEEE, 1992.

M. f<ifer, W. f<im, and Y. Sagiv. Querying object-oriented databases. In M. Stonebraker, editor, sigmod,
volume 21, pages 393-402, San Diego, California, June 1992. acm, Acm Press.

N.Pissinou, f<. Makki, and Y. Yesha. On temporal modeling in the context of object databases. S/GMOD RE­
CORD, 22(3):8-15, septembre 1993.

E. Rose andA. Segev. TOOSQL- A Temporal Object-oriented Query Language. In Proceedíngs ofthe 1Oth
lnternationa/ Conference on the Entíty-Re/ationship Approach, Dalias, TX, 1993.

Stanley.Y.W. Su and Hsin-Hsin. M. Chen. A temporal knowledge representation model OSAM*/T and its
query language OQL/T. In Proceedings ofthe VLDB 17, Barcelona Spain, 1991.

E. Sciore. Multidimensional versioning for object-oriented databases. Proc. Second lntemational Conf on
Deductive and Object-Oriented Databases, December 1991.

R. T. Snodgrass. An Overview of TQuel, chapter 6, pages 141-182. In Tanzel et al. TCG+93, 1993.

R. Snodgrass. Temporal object-oriented databases: A critica! comparison. In Won f<im Editor, editor, Modern
Data Base systems. Addison Wesley, 1995.

[TCG+93] A. Tanzel, J. Clifford, S. Gadia, S. Jajodia, A. Segev, and R. Snodgrass, editors. Temporal Databases.

[Tic85]

[WD93]

Theory, Design, and lmplementation. Benjamin/Cummings, 1993.

W.F. Tichy. RCS- a system for version control. Software-Practice and Experience, 15:637-654, 1985.

Gene T.J. Wuu and Umeshwar Dayal. A Uniform Model for Temporal and Versioned Object-oriented Data­

bases, chapter 10, pages 230-247. In Tanzel et al. TCG+93, 1993.

433

